Thursday, February 18, 2010

CONSTRUCTION OF AC MOTORS

The stator consists of wound 'poles' that carry the supply current to induce a magnetic field that penetrates the rotor. In a very simple motor, there would be a single projecting piece of the stator (a salient pole) for each pole, with windings around it; in fact, to optimize the distribution of the magnetic field, the windings are distributed in many slots located around the stator, but the magnetic field still has the same number of north-south alternations. The number of 'poles' can vary between motor types but the poles are always in pairs (i.e. 2, 4, 6, etc.).
Induction motors are most commonly built to run on single-phase or three-phase power, but two-phase motors also exist. In theory, two-phase and more than three phase induction motors are possible; many single-phase motors having two windings and requiring a capacitor can actually be viewed as two-phase motors, since the capacitor generates a second power phase 90 degrees from the single-phase supply and feeds it to a separate motor winding. Single-phase power is more widely available in residential buildings, but cannot produce a rotating field in the motor (the field merely oscillates back and forth), so single-phase induction motors must incorporate some kind of starting mechanism to produce a rotating field. They would, using the simplified analogy of salient poles, have one salient pole per pole number; a four-pole motor would have four salient poles. Three-phase motors have three salient poles per pole number, so a four-pole motor would have twelve salient poles. This allows the motor to produce a rotating field, allowing the motor to start with no extra equipment and run more efficiently than a similar single-phase motor.
There are three types of rotor:
The most common rotor is a squirrel-cage rotor. It is made up of bars of either solid copper (most common) or aluminum that span the length of the rotor, and those solid copper or aluminium strips can be shorted or connected by a ring or some times not, i.e the rotor can be closed or semiclosed type. The rotor bars in squirrel-cage induction motors are not straight, but have some skew to reduce noise and harmonics.
A slip ring rotor replaces the bars of the squirrel-cage rotor with windings that are connected to slip rings. When these slip rings are shorted, the rotor behaves similarly to a squirrel-cage rotor; they can also be connected to resistors to produce a high-resistance rotor circuit, which can be beneficial in starting
  • Solid core rotor
A rotor can be made from a solid mild steel. The induced current causes the rotation.

Principle of operation and comparison to synchronous motors

A 3-phase power supply provides a rotating magnetic field in an induction motor.
The basic difference between an induction motor and a synchronous AC motor is that in the latter a current is supplied onto the rotor. This then creates a magnetic field which, through magnetic interaction, links to the rotating magnetic field in the stator which in turn causes the rotor to turn. It is called synchronous because at steady state the speed of the rotor is the same as the speed of the rotating magnetic field in the stator.
By way of contrast, the induction motor does not have any direct supply onto the rotor; instead, a secondary current is induced in the rotor. To achieve this, stator windings are arranged around the rotor so that when energised with a polyphase supply they create a rotating magnetic field pattern which sweeps past the rotor. This changing magnetic field pattern induces current in the rotor conductors. These currents interact with the rotating magnetic field created by the stator and in effect causes a rotational motion on the rotor.
However, for these currents to be induced, the speed of the physical rotor must be less than the speed of the rotating magnetic field in the stator, or else the magnetic field will not be moving relative to the rotor conductors and no currents will be induced. If by some chance this happens, the rotor typically slows slightly until a current is re-induced and then the rotor continues as before. This difference between the speed of the rotor and speed of the rotating magnetic field in the stator is called slip. It is unitless and is the ratio between the relative speed of the magnetic field as seen by the rotor (the slip speed) to the speed of the rotating stator field. Due to this an induction motor is sometimes referred to as an asynchronous machine. Most frequently used in industries.
An induction motor (or asynchronous motor or squirrel-cage motor) is a type of alternating current motor where power is supplied to the rotor by means of electromagnetic induction.
An electric motor converts electrical power to mechanical power in its rotor (rotating part). There are several ways to supply power to the rotor. In a DC motor this power is supplied to the armature directly from a DC source, while in an induction motor this power is induced in the rotating device. An induction motor is sometimes called a rotating transformer because the stator (stationary part) is essentially the primary side of the transformer and the rotor (rotating part) is the secondary side. The primary side's currents evokes a magnetic field which interacts with the secondary side's emf to produce a resultant torque, henceforth serving the purpose of producing mechanical energy. Induction motors are widely used, especially polyphase induction motors, which are frequently used in industrial drives.
Induction motors are now the preferred choice for industrial motors due to their rugged construction, absence of brushes (which are required in most DC motors) and — thanks to modern power electronics — the ability to control the speed of the motor.
A brushless DC motor (BLDC) is a synchronous electric motor which is powered by direct-current electricity (DC) and which has an electronically controlled commutation system, instead of a mechanical commutation system comprisingbrushes and a commutator. In such motors, current and torque, voltage and rpm are linearly related.
Two types:
  • The stepper motor type may have more poles on the stator (fixed permanent magnet).
  • The reluctance motor. This may not have permanent magnets, just salient poles that are pulled into alignment by timed stator drive.
In a conventional (brushed) DC motor, brushes (usually made of graphite, but metal in some of the smallest motors) are under spring tension; they rest on the commutator), which is nearly always a cylindrical assembly of insulated copper bars parallel to the shaft. This is a long-life rotary switch; it connects the DC electrical source to the armature coil-windings. As the armature rotates on axis, the stationary brushes come into contact with different sections of the rotating commutator, thereby switching in different sections of the rotor winding. The part of the rotor winding that receives power at any given instant is always "misaligned" with the stator poles, and magnetic attraction makes the rotor turn. (These motors are also made to run on regular AC power, as well; such motors are found in vacuum cleaners or traditional electric handheld power tools and sewing machines, for instance. They are typically noisy and run faster than induction motors.)
In a BLDC motor, the electromagnets do not move; instead, the permanent magnets rotate and the armature remains static. This gets around the problem of how to transfer current to a moving armature. In order to do this, the brush-system/commutator assembly is replaced by an electronic controller. The controller performs the same timed power distribution found in a brushed DC motor, but using a solid-state circuit rather than a commutator/brush system.

The principle

The conversion of electrical energy into mechanical energy by electromagnetic means was demonstrated by the British scientist Michael Faraday in 1821. A free-hanging wire was dipped into a pool of mercury, on which a permanent magnet was placed. When a current was passed through the wire, the wire rotated around the magnet, showing that the current gave rise to a circular magnetic field around the wire.[2] This motor is often demonstrated in school physics classes, but brine (salt water) is sometimes used in place of the toxic mercury. This is the simplest form of a class of devices called homopolar motors. A later refinement is the Barlow's Wheel. These were demonstration devices only, unsuited to practical applications due to their primitive construction.
An electric motor uses electrical energy to produce mechanical energy, through the interaction of magnetic fields and current-carrying conductors. The reverse process, producing electrical energy from mechanical energy, is accomplished by a generator or dynamo. Traction motors used on vehicles often perform both tasks. Many types of electric motors can be run as generators, and vice versa.
Electric motors are found in applications as diverse as industrial fans, blowers and pumps, machine tools, household appliances, power tools, and disk drives. They may be powered by direct current (for example a battery powered portable device or motor vehicle), or by alternating current from a central electrical distribution grid. The smallest motors may be found in electric wristwatches. Medium-size motors of highly standardized dimensions and characteristics provide convenient mechanical power for industrial uses. The very largest electric motors are used for propulsion of large ships, and for such purposes as pipeline compressors, with ratings in the millions of watts. Electric motors may be classified by the source of electric power, by their internal construction, and by their application.
The physical principle of production of mechanical force by the interactions of an electric current and a magnetic field was known as early as 1821. Electric motors of increasing efficiency were constructed throughout the 19th century, but commercial exploitation of electric motors on a large scale required efficient electrical generators and electrical distribution networks.
By convention, electric engine refers to a railroad electric locomotive, rather than an electric motor.



An inductor or a reactor is a passive electrical component that can store energy in a magnetic field created by the electric current passing through it. An inductor's ability to store magnetic energy is measured by its inductance, in units of henries. Typically an inductor is a conducting wire shaped as a coil, the loops helping to create a strong magnetic field inside the coil due to Faraday's Law of Induction. Inductors are one of the basic electronic components used in electronics where current and voltage change with time, due to the ability of inductors to delay and reshape alternating currents.
A capacitor or condenser is a passive electronic component consisting of a pair of conductors separated by a dielectric (insulator). When a potential difference (voltage) exists across the conductors, an electric field is present in the dielectric. This field stores energy and produces a mechanical force between the conductors. The effect is greatest when there is a narrow separation between large areas of conductor, hence capacitor conductors are often called plates.
An ideal capacitor is characterized by a single constant value, capacitance, which is measured in farads. This is the ratio of the electric charge on each conductor to the potential difference between them. In practice, the dielectric between the plates passes a small amount of leakage current. The conductors and leads introduce an equivalent series resistance and the dielectric has an electric field strength limit resulting in a breakdown voltage.
Capacitors are widely used in electronic circuits to block the flow of direct current while allowing alternating current to pass, to filter out interference, to smooth the output of power supplies, and for many other purposes. They are used in resonant circuits in radio frequency equipment to select particular frequencies from a signal with many frequencies.
A resistor is a two-terminal electronic component that produces a voltage across its terminals that is proportional to the electric current passing through it in accordance with Ohm's law:
V = IR
Resistors are elements of electrical networks and electronic circuits and are ubiquitous in most electronic equipment. Practical resistors can be made of various compounds and films, as well as resistance wire (wire made of a high-resistivity alloy, such as nickel/chrome).
The primary characteristics of a resistor are the resistance, the tolerance, maximum working voltage and the power rating. Other characteristics include temperature coefficient, noise, and inductance. Less well-known is critical resistance, the value below which power dissipation limits the maximum permitted current flow, and above which the limit is applied voltage. Critical resistance depends upon the materials constituting the resistor as well as its physical dimensions; it's determined by design.
Resistors can be integrated into hybrid and printed circuits, as well as integrated circuits. Size, and position of leads (or terminals) are relevant to equipment designers; resistors must be physically large enough not to overheat when dissipating their power.